Form factor for a family of quantum graphs: an expansion to third order
نویسندگان
چکیده
منابع مشابه
Form factor for a family of quantum graphs: an expansion to third order
For certain types of quantum graphs we show that the random matrix form factor can be recovered to at least third order in the scaled time τ from periodic-orbit theory. We consider the contributions from pairs of periodic orbits represented by diagrams with up to two self-intersections connected by up to four arcs and explain why all other diagrams are expected to give higher-order corrections ...
متن کاملForm factor expansion for large graphs: a diagrammatic approach
The form factor of a quantum graph is a function measuring correlations within the spectrum of the graph. It can be expressed as a double sum over the periodic orbits on the graph. We propose a scheme which allows one to evaluate the periodic orbit sum for a special family of graphs and thus to recover the expression for the form factor predicted by the Random Matrix Theory. The scheme, althoug...
متن کاملSmall-tau expansion for the form factor of glued quantum star graphs
We compute the small-tau expansion up to the third order for the form factor of two glued quantum star graphs with Neumann boundary conditions, by taking into account only the most backscattering orbits. We thus show that the glueing has no effect if the number of glueing edges is negligible compared to the number of edges of the graph, whereas it has an effect on the τ term when the numbers of...
متن کاملThe spin contribution to the form factor of quantum graphs
Following the quantisation of a graph with the Dirac operator (spin-1/2) we explain how additional weights in the spectral form factor K(τ) due to spin propagation around orbits produce higher order terms in the small-τ asymptotics in agreement with symplectic random matrix ensembles. We determine conditions on the group of spin rotations sufficient to generate CSE statistics. E-mail address: j...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2003
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/36/31/303